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Abstract

Dexterous telerobots incorporating 17 or more degrees of freedom operating under coordinated, sensor-driven

computer control will play important roles in future space operations. They will also be used on Earth in

assignments like fire fighting, construction and battlefield support. A real time, reflexive obstacle avoidance system,

seen as a functional requirement for such massively redundant manipulators, was developed using arm-mounted

proximity sensors to control manipulator pose. The project involved a review and analysis of alternative proximity
sensor technologies for space applications, the development of a general-purpose algorithm for synthesizing sensor

inputs, and the implementation of a prototypical system for demonstration and testing. A 7 DOF Robotics Research

K-2107HR manipulaWr was outfitted with ultrasonic proximity sensors as a testbed, and Robotics Research's
standard redundant motion control algorithm was modified such that an object detected by sensor arrays located at the

elbow effectively applies a 'force" to the manipulator elbow, normal to the axis. The arm is "repelled" by objects
detected by the sensors, causing the robot to steer around objects in the workspace automatically while continuing to

move its tool along the commanded path without interruption. The mathematical approach formulated for

synthesizing sensor inputs can be employed for redundant robots of any kinematic configuration. The work described

in this paper was funded by NASA Langley Research Center.

1.0 INTRODUCTION

The National Aeronautics and Space Administration (NASA) has identified a number of promising

applications for advanced robots and telerobots in future space operations. The most sophisticated of these
robots will be required to perform complex tool-handling tasks with dexterity approaching

"man-equivalence", while operating with a minimum of human intervention.

One class of NASA telerobots will be designed for EVA operations in high vacuum, zero-G or micro-G

environments. Prototypical of this class is the Flight Telerobotic Servicer (FTS), a general-purpose
tool-handling robot that will be used by Astronauts to assist in the assembly and servicing of the U.S.

Space Station. (An illustration of the Grumman-Robotics Research-TRW team concept for FTS is shown

in Figure 1.) Transported by NASA's Orbital Maneuvering Vehicle (OMV), the FTS and derivative models
will eventually be deployed for remote servicing of the polar orbiting platform and the growing fleet of civil

and military satellites in geosynchronous orbit. EVA servicing robots like the FTS also may become

standard integral maintenance and repair subsystems on board large unmanned space probes and manned

interplanetary vessels.

Robots with capabilities similar to the Flight Telerobotic Servicer will play important roles in initial
exploration of the surface of other planets and moons in the Solar system. Designed to operate in the local

gravity field and atmosphere, these units will naturally be built with somewhat different physical

proportions, materials and sensor systems than high-vacuum, zero-G telerobots like FTS. They will also,
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by necessity, be capable of considerable local

intelligence and autonomy, since transmission delays
preclude real-time control from remote human

operators. In the planned Mars Rover mission, for

instance, mobile robots will be used to survey Mars

autonomously, examining the surface at close range
and retrieving geological samples for analysis on
Earth. Other devices of this type will be used to

resume expl(ration of the surface of the Moon, and to
survey the satellites of Jupiter and Saturn.

A third class of dexterous tool-handling robots are
being planned by NASA for use in micro-G, IVA

operations. These devices will operate inside Space

Station laboratory modules, initially performing
routine material-handling functions such as those

required in semiconductor processing and liquid

pharmaceutical processing operations which exploit

the micro-G environment. Very general-purpose
mobile servicers may ultimately be developed to
handle "housekeeping" chores within the crew

modules of the Space Station and manned Figure 1:

interplanetary vessels. Grumman- TRW-Robotics Research

Concept for NASA Flight Telerobotic Servicer

The specific physical configurations of NASA's dexterous telerobots will differ from one application to

another, and one working environment to another. Some may have a single tool-handling arm. Some may
have two dexterous arms mounted on a torso/waist assembly. Others may utilize "spider" configurations to
provide mobility on a Iruss, including several arms, each with a dexterous end-effector, plus a number of

legs and peripheral camera and light positioners. The control system capabilities of these robots will also
differ from one application to another. Some will function primarily in a teleoperated or shared control

mode, with the "man in the loop", while others will operate autonomously for long periods of time.

Nevertheless, the basic missions established for NASA's dexterous manipulator systems impose certain

common requirements for their physical designs and control architectures. One can reasonably foresee thefollowing:

The Need for Kinematic Redundancy In order to perform their assigned tool-handling tasks, NASA's
dexterous telerobots will generally have more than six joints operating under simultaneous, coordinated

control. Seven axes are the minimum required in a mechanical manipulator to emulate the basic motions of

the human arm, from the shoulder to the wrist. Like the human arm, a 7 degree of freedom (DOF)
manipulator can assume any number of different joint configurations, or arm poses, for a given position and
orientation of the "hand" (or "toolpoint"). With one "redundant" degree of freedom, the manipulator arm has

the freedom, for example, to reach around and avoid collisions with objects in certain locations in its

workspace while it performs its programmed task. In principle, the more redundant degrees of freedom

incorporated in the manipulator system, the more versatility it has. To perform extremely complex tasks
with skill approaching "man equivalence", future space telerobots will eventually incorporate hundreds of
degrees of freedom operating under coordinated control.

The Need for Sensor-Driven Computer Control of Redundanc_ A computer will be required to coordinate

the actions of the joints in these redundant manipulator systems. In the limited number of mission

scenarios in which such telerobots might be commanded in a teleoperated mode by nearby Astronauts, it is

unlikely that many of the manipulator configurations could be slaved to a "replica" master (a device whose

geometry matches that of the slave which permits the human operator to directly and continuously control
the individual joints in the slave manipulator). Obviously, in massively redundant manipulator systems

and ones which assume non-anthropomorphic configurations, this would be entirely impractical. Instead,
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onecanreasonablypredictthatthehumanoperatorwillsharethe control of the dexterous manipulator with

a computer, where, at most, the human essentially "flies the hands" of the manipulator system by

specifying a 6 DOF goalpoint, while the local computer decides how to move the manipulator joints to
execute this toolpoint trajectory. (In this mode, the human operator will also need the ability to control the

position of the hand in some tool axes and the forces applied in the others.)

The local computer system which is charged with real-time, coordinated control of manipulator joints will

decide how to employ the redundancy in the system based on sensory inputs about its internal condition and

its environment, using a set of rules which seek to optimize the situation. The NASREM architecture,

developed by Dr. James S. Albus, et al, at the U.S. National Institute of Standards and Technology
(formerly National Bureau of Standards), has been adopted by NASA as its standard reference model for

advanced telerobot control systems32. NASREM utilizes a hierarchical architecture in which each

st_ively higher level has a broader purview with respect to space and time, and is equipped with sensory

feedback, memory and logical functions appropriate to its level of responsibility. In this context, authority
over bow to use the kinematic redundancy in the manipulator will not reside within any single level of the

control system, but will be affected by decisions made at all levels.

Robotics Research Corporation is principally concerned with those levels of the telerobot control system

responsible for making "reflexive motion control" decisions based on local, kinesthetic sensors mounted on

the manipulator. These might be viewed as "brainstem" functions, analogous to the autonomic or

sympathetic divisions of the central nervous system in biological models. (They are encompassed by
Levels 1, 2 and 3 in the NASREM model-- "Servo", "Primitive", and "Elemental Move".)

Investigators at Robotics Research believe that this reflexive motion control system will employ a
hierarchy of competing rules, or objective functions, in making a balanced decision each clock cycle about

how best to dispose manipulator redundancy. We propose that, in general, the robot should attempt to

execute the commanded toolpoint trajectory,

1. while avoiding collisions with itself, and
2. while avoiding collisions with objects that are detected in the telerobot's working envelope, and

3. while recognizing singularities intrinsic to its mechanical geometry and using them appropriately,

a) to produce energy-efficient, graceful motion, or

b) to increase leverage (mechanical advantage), or

c) to control "impedance" at the toolpoint, and
4. while "favoring" any joints that are sensed to be closer to their thermal limits than others.

Obviously, a higher level in the hierarchical control system may elect to override or reprioritize these

objectives based on its broader view of the situation.

Robotics Research Corporation introduced its fn'st products in 1984-- the K-Series line of Dexterous

Manipulators and the Type 1 Motion Controller, a motion control system based on the National Bureau of
Standards hierarchical architecture and designed specifically to provide real time control of the company's

kinematically-redundant arms. The 16-bit Type 1 Motion Controller, and the newer, 32-bit Type 2 model,

employ proprietary algorithms which coordinate the joint motions of a redundant system using a set of

weighted objective functions and which solve these equations in an extremely computationally-efficient
manner30,31. Original algorithms accomplish 3a, above, i.e., they recognize singularities intrinsic to the

manipulator's mechanical geometry and use them appropriately to produce efficient, graceful motion.
Robotics Research has subsequently been developing new objective functions compatible with these

algorithms.

The goal of the research described in this report was to implement objective function 2, above-- a means
for real-time control of manipulator redundancy using arm-mounted proximity sensors to provide reflexive

collision avoidance. While this effort aimed primarily at avoiding collisions with external objects detected

in the workspace, in fact, it is clear that the principle devised applies equally well to function 1, above, i.e.,

detecting and avoiding collisions between different members of the manipulator itself.
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2.0 TECHNICAL OBJECTIVES

The research effort described in this report had four specific objectives:

1. To survey alternative proximity sensor technologies that could be used on dexterous manipulators to

accomplish real-time, reflexive obstacle avoidance, with particular emphasis on sensor systems that could
be employed in the space environment;

2. To develop algorithms which translate arm-mounted proximity sensor data into appropriate penalty
functions representing obstacles in the robot workspace;

3. To modify Robotics Research Corporation's existing software to synthesize a set of motion

commands which automatically cause a kinematically-redundant manipulator to avoid obstacles while
accomplishing a prescribed end-effector path;

4. To implement such a reflexive obstacle avoidance system which controls the redundant degree of
freedom of an available Robotics Research K-2107H 7-axis manipulator (Figure 2) and to demonstrate the

ability of this system to execute prescribed toolpoint paths while automatically keeping the elbow clear of
obstacles placed within its workplace.

SURVEY OF APPLICABLE PROXIMITY SENSOR TECHNOLOGY

Functional Requirements for Arm-Mounted Proximity Sensors

For the general problem of reflexive obstacle avoidance using arm-mounted sensors, a system is needed that

effectively creates a "field" around the entire manipulator assembly capable of detecting the presence and
measuring the coordinates of objects anywhere close to the surface of the unit (Figure 3).

We established the following specific guidelines in evaluating alternative sensor technologies:

1. The system must have the ability to detect objects of a wide variety of physical sizes, geometries,
materials, surface finishes and temperatures;

.

.

Candidate sensor hardware must permit compact mounting on the manipulator in array configurations

which, given the intrinsic beam geometry, provide full coverage (i.e., no blind spots);

Candidate sensor hardware must be capable of reliably detecting and measuring the distance of objects
normal to the manipulator surface at a minimum range of one inch to 12 inches with a minimum

accuracy of +/-10% (a zero to 24 inch range is considered to be ideal for the obstacle avoidance
application);

o

.

The proximity sensor array covering the entire manipulator assembly should operate with an update
rate of less than 20 milliseconds (50 Hz), including transmission delays and computation;

Sensor-emitted energy must not cause injury to personnel or damage to equipment within or without
its effective sensing range;

. The system should not have moving mechanical parts (e.g., no scanning mechanism should be used
to generate a useful field of view).

Arrays of ultrasonic acoustic sensors might be devised which meet these qualifications for Earth use, as

discussed in a subsequent section of this report. In space, candidate sensors obviously must employ some
frequency in the electromagnetic spectrum, but a number of other requirements must also be considered:
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°

.

3.

4.

The sensor hardware must have the ability,
a) to withstand the space environment (i.e., to tolerate high vacuum, ambient

radiation, thermal ex[remes, and shock and vibration), and
b) to function properly in that environment (i.e., not to be confused by solar

radiation and EMI from other sources);

Sensor-emitted radiation must not interfere with other spacecraft systems;

The sensor system must consume little power;

Any "blanket" of proximity sensors must not adversely affect the manipulator's ability to reject
waste heat to space.

Figure 2:
Robotics Research K-2107HR

7 DOF Manipulator Arm

Figure 3:
Idealized Proximity-Sensing "Field"

Surrounding Manipulator

3.2 Proximity Sensor Principles of Operation

In order to drive the reflexive obstacle avoidance algorithms, the sensor system must provide information
that describes the location of the obstacle relative to the manipulator. Location can be reduced to

components of bearing, azimuth and range. Means of deducing the bearing and azimuth are, as follows:

1. A dense blanket of simple transmitter/receivers, radially mounted, each dedicated to sensing a sector

of bearing and ,azimuth (Figure 4);

2. A system of numerous emitters and one-dimensional sensor arrays, radially or laterally mounted, each
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equipped with an optical system which couples each sensor pixel to a particular sector of space
(Figure 5),

A system of a few emitters and two-dimensional sensor arrays, radially or laterally mounted, each

equipped with an optical system which couples every sensor pixel to a particular sector of space
(Figures 6 and 7).

Independent of the means employed to determine bearing and azimuth, the sensors and emitters of

illumination can utilize a variety of techniques to deduce range.

°

.

°

.

.

Pulsed or continuous radiation is transmitted and the intensity of the return echo

reflected from an object is measured. Since the intensity of the reflection for a point source
diminishes at the inverse square of the distance, a range can be calculated. Due to variations in

reflectivity of different targets (size, geometry, surface finish), echo intensity is not a reliable
geoeral-parpose ranging system.

Time of Flight The time delay between the transmission of a signal pulse and the return echo

reflected from an object is measured. Distance is directly proportional to time delay.

Amplitude Modulation Continuous amplitude-modulated radiation is transmitted (its intensity is
varied cyclically) and the phase shift of the return echo is compared with that of the emitted refexence

signal. Phase shift is a function of distance. The significant advantages of the phase shift approach

are that the electronics required for continuous emission are relatively simple compared to pulse-type

systems and it is a superior technique for use in measuring distance at very short ranges. A factor
that must be taken into account with phase shift systems is the ambiguity which arises when signals

are returned from a distance that exceeds one-half the speed of light divided by the modulation

frequency. The intensity may be employed to resolve this problem by the use of an appropriate

intensity threshold (below which the signal is disregarded) and the choice of a reasonably long
ambiguity distance.

Freauencv Modulation Continuous frequency-modulated radiation is transmitted (its frequency is
varied cyclically) and the phase shift of the return echo is compared with that of the emitted reference

signal. Phase shift is a function of distance. Ambiguity is again a factor.

T,xiallgl_/_ Beating and azimuth information to the same object from different points of known
location and separation can be used to determine range. If the angular information is discretized into
sectors, the range information must be discretized as well.

3.3 Candidate Sensors for Space Applications

A number of available sensor technologies might serve the purpose in a reflexive obstacle avoidance system
for space applications. The most promising band of wavelengths for the system ranges from the

near-infrared (1100 nM) to the near-ultraviolet (200 nM). Silicon-based photosensitive devices, in

particular, are suitable for this part of the spectrum. Gallium arsenide-based devices also could be employed

and would be desirable if the telerobot were subjected to an intense radiation environment. However,
gallium arsenide-_ devices are expensive and offer fewer options for large scale integration with local
signal conditioning, logic and multiplexing electronics.

This sensor system must be able to function reliably independent of the background radiation. Intense solar

illumination, Earthlight and moonlight, reflections and emissions from nearby spacecraft, and the extreme
contrast against the blackness of space make this a challenging problem. Photosensitive devices will

almost certainly have to extract a usable return signal from background noise by employing controlled

illumination. Two techniques, in the opinion of the investigators, offer the most potential: notch pass

filtering of the detector, and amplitude modulation of the emitted lighting. Well-known techniques exist for
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filtering the light incident on the detector to allow only a relatively narrow slice of the spectrum, centered

on the wavelength of the emitted light, to fail on the detector. This is helpful in limiting the DC response

and saturation of the detector when exposed to intense background noise. Likely devices for generating the
light for illumination of the objects have very narrow emission spectra and can provide usable levels of

illumination relative to the energy content of the incident light at that wavelength.

A second enabling technique for enhancing the general signal-to-noise ratio is amplitude-modulation of the

emitted illumination, also a convenient method for determining range. (The frequency corresponding to a
fifteen foot ambiguity of range is about 3.4x107Hz.) The receiving electronics can be AC-coupled and

responsive only to detected signals varying in amplitude at that frequency, providing complete rejection of
ambient light signals. Range deduction is accomplished by phase comparison with the emitted
illumination.

This general implementation of an ann-mounted proximity sensor system promises to satisfy the key
functional requirements for a reflexive obstacle avoidance in space applications. Utilization of the

amplitude-modulation technique definitely favors a sensor with fast response and low hysteresis. The

significant changes in background lighting, even with f'fltering, favors a sensor with linearity over a wide

dynamic range and relatively low internal gain. Since relatively low voltages are advantageous (consistent

with highly integrated, semiconductor electronics), the sensor of choice becomes the silicon photodiode.

To obtain the best linearity and dynamic range, photovoltaic operation is preferred. Photovoltaic operation

also minimizes the noise perceived from several sources. Given the need for high speed operation with an
amplitude-modulated light source, the proposed implementation of the photodiode is in a photoconductive

mode with a reverse bias applied to the photodiode. This system, with a tmnsimlxxlance amplifier, provides
high speed operation with a wide dynamic range. The reverse bias causes a significant reduction in the

junction capacitance, the major impediment to high frequency response.

Silicon photodiodes are available in all of the physical arrangements previously discussed (single element

sensors of various sizes, linear arrays of discrete photodiodes and rectangular discrete arrays). In addition,
silicon photodiode technology can be used to make position sensors. This implementation can be used to

determine both analog intensity of perceived light and analog position of the center of the spot of light on
the sensor surface, with both one dimensional position on a linear element or both x and y positions on a

square or rectangular element. These devices are most commonly employed in laser triangulation probes
(refer to Figures 6 and 7). The relatively coarse measurement resolution required in this application favors
the use of discrete element arrays, since they provide sufficient resolution (discrete photodiode elements are

available as small as 0.004" on a side) and can be fabricated in a IC fashion with amplification, local logical
processing and multiplexing components on a single chip.

Such a chip could be designed to report over any suitable network a message that an object has been detected

in a particular direction (the chip/element address, corresponding to a particular sector in bearing and
azimuth relative to a known point on the manipulator) and at a particular range, deduced locally by

comparing the perceived amplitude modulation phase with the emitted light reference signal. This approach
would permit the obstacle sensing systems to be placed on a flexible circuit board with a minimum number

of electrical connections for power, communications and ground/common. (A higher speed communication

system might also be implemented with sync lines or a parallel structure.) In this configuration, all of the
high speed operations are resident on the individual chips.

The best candidates for providing amplitude-modulated illumination are solid state laser diodes and light

emitting diodes. Both of these devices, closely related, are commonly utilized in fiber-optic
communications systems operating at extremely high modulation frequencies. The effective detection of
objects and safety of Astronaut vision are both enhanced by using relatively diffuse beams of illumination.

Further investigation and design by those skilled in the art will be necessary to choose the intensity of

illumination and detailed characteristics of the detectors, amplifiers and other elements of a practical sensor
system of this type.
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3.4 Selection of Proximity Sensors for Experimental Purposes

Several commercial ultrasonic sensor systems were identified which operate over the range required for our

laboratory use in algorithms development and demonstrations. After review, sensors and a multiplexing

system were selected which operate in a 5"-to-36" range at 225 kHz with an accuracy of +/-0.004". The
sensor head measures 1-5/16" long by 5/8" in diameter. The sensor produces an average beam angle over

the range of approximately 18 degrees. The multiplexing electronics provide a sequential scanning mode
operating at 12 mS per sensor, enabling us to mount a number of sensors close together as an array without

interference. Eight multiplexed ultrasonic proximity sensors were mounted in a hemispherical array on

either side of the elbow joint, scanning a large "couelike" region around the manipulator elbow (Figures 8

and 9). Each sensor responds to objects in the range of approximately S" to 26" from the manipulator.

The selected array configuration has gaps in the sensing zone due to the rather narrow field of view of each

sensor. An attempt was made to increase the field of view of these sensors by using a concave surface

aligned to one side of the beam angle. Although this did increase the beam angle (at the expense of the
sensing distance), the approach also had a signifr,.ant adverse effect on the sensitivity and accuracy of the

measurements. In experiments, these gaps ultimately proved to have no significant effect on performance.

CONTROL SYSTEM

Robotics Research Corporation Motion Control Algorithms

A 7 degree of freedom Robotics Research K-2107HR Dexterous Manipulator and Type 2 Motion Controller
were utilized as a testbed for algorithm implementation (Figure 2). The Type 2 Motion Controller is an

open-architecture, 32-bit multiprocessor position control system designed to coordinate the motion of a

redundant manipulator. A set of weighted objective functions are used to determine the joint motion

commands. Algorithms previously implemented by Robotics Research produce graceful, singularity-free

motion by treating the redundant system as a spring-loaded mechanism which can deform elastically

according to how the end effector is positioned.

Robotics Resoarch's approach to obstacle avoidance employs a similar conceptual model, creating a

repellant "force field" in which the manipulator senses obstacles as repellent forces that push on the springs
to achieve equilibrium. The intensity of these forces varies with the distance of the object from the arm.

The moments generated by these forces cause the system to employ its redundancy to escape the force field.

In the case of the K-2107 Dexterous Manipulator used as a testbed for this development program, we have a

seven jointed linkage effectively pinned at both ends (fixed at the base and maintaining a commanded

position at the tool tip) in which elbow attitude is the only variable (Figure 10). While maintaining a

specified tool position and orientation, this "extra" degree of freedom can be used to revolve or "orbit" the
elbow in a direction along the centerline of the elbow pitch joint (J4). This capability exists whether the

toolpoint remains fixed during the orbit move or is in transit from one goalpoint to another.

It is important to note that a more highly redundant system, such as Robotics Research's new K]B-2017
Dexterous Manipulator, provides for considerably greater freedom of action in avoiding obstacles. The

K/B-2017 is seen as prototypical of many future space servicing robots. It incorporates 17 degrees of

freedom operating under coordinated computer control, with two 7 DOF arms mounted on a 3 DOF

torso/waist. In this system, five independent "orbit" modes can be brought into play simultaneously, one
for each elbow and three for the torso. This level of redundancy begins to approach "man-equivalent"

versatility and maneuverabifity when performing complex tool-handling operations in crowded worksites
without unintended collisions.

In our laboratory implementation of the proximity sensors system on a 7 degree of freedom arm, signals

transmitted by each sensor in the elbow-mounted arrays to the control unit are processed to add vectorially
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the largest forces (as reflected by the closest objects) on either side of the manipulator and to apply the
resultant force along the centerline of the elbow (J4). This scheme enables the arm to center itself between

objects detected on either side of the elbow joint or on both sides simultaneously. In addition, the forcing
function varies exponentially with distance, so that objects detected at close range cause a much more rapid

movement of the arm away from an impending collision. This factor can be easily adjusted to increase or

decrease the sensitivity of the arm to an object in its working space.

5.0 CONCLUSIONS

The concept of a reflexive, proximity sensor-based, real-time obstacle avoidance system is seen by Robotics

Research as one of the key enabling technologies required to exploit fully the intrinsic advantages of

redundancy. This NASA-spousored research project has afforded us the opportunity to demonstrate that

concept. The system we have developed, while experimental, works quite well and was implemented

without any significant difficulties. Our general conclusions are, as follows:

I° Technology appears to be available today to produce proximity sensor hardware for use in a space
environment to support reflexive obstacle avoidance. The practicality of such a system will depend

heavily on clever systems integration. It appears to us that a key requirement is the development of

a small, rugged, highly integrated emitter-sensor package with local processing.

.

.

Ultrasonic sensor systems are also available today that could be effective in this application for

terrestrial/atmospheric use. Again, the practicality of such a system will depend upon careful

systems integration.

The placement and coverage of the sensor array used to update the control, in combination with the

"spring constant" established for a perceived object, are judged to be the most important design

variables affecting the behavior of the obstacle avoidance system.

. The mathematical approach employed by Robotics Resextrch to translate proximity sensor inputs into
additional redundant control criteria is extensible to massively redundant systems of any topology.

The more redundant the system in question, the more valuable sensor-driven reflexive obstacle

avoidance becomes.

. We believe this work establishes a theoretical basis for a practical reflexive obstacle avoidance

system for future telerobots used both in space and in ground applications. In the case of complex
space and nuclear servicing robots, it may, indeed, be impossible to perform the planned operations

without some type of reflexive system. Also, real-time collision avoidance is a critical safety

subsystem. We further anticipate that opportunities for the application of redundant robots in

industrial factory-automation would also be substantially expanded if a reflexive obstacle avoidance

system became commercially available. Off-line programming for redundant manipulators and

associated workcell design time would be greatly reduced were an obstacle avoidance system to select

arm pose dynamically, and without explicit programming or operator intervention.
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